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Saltmarsh foraminifera in the subarctic White Sea: Thrive in summer, 
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A B S T R A C T   

Abundance and diversity of intertidal benthic foraminifera decreases towards the poles. Well studied in the 
temperate zone, saltmarsh foraminiferal assemblages have only recently received attention at higher latitudes. 
We report modern foraminifera, including the taxonomy, abundance, and zonation, from a pristine saltmarsh in 
the subarctic White Sea, northern Europe. We sampled 10 stations (surface sediment, two replicates) from two 
high-tide flats covered with lush halophytic plants. Nine foraminiferal species found exhibited distinct vertical 
zonation confined to certain elevation levels. The high marsh assemblage comprised arenaceous Balticammina 
pseudomacrescens, Trochammina inflata, Jadammina macrescens, and monothalamous Ovammina opaca. This is the 
northernmost location where the first two species have been encountered alive. The low marsh assemblage was 
dominated by Miliammina fusca and Elphidium williamsoni. Summer abundances of live foraminifera were sur-
prisingly higher than on other subarctic saltmarshes studied, mostly 100–500 and up to 3000 per 10 cm3. In 
winter, under a 40 cm of ice, the abundances were only 15–20 ind./10 cm3, but the species richness was the 
same. Unlike summer specimens of calcareous foraminifera, which are always brightly colored, winter Elphidium 
williamsoni all had bleak colorless cytoplasm, suggesting they discard kleptoplasts and abandon algal diet. We 
conclude that the insulating blanket of fast ice, which hardly moves on saltmarshes, prevents elimination of 
foraminifera in the harshness of winter, whereas the intense continental heating in summer lets them thrive on 
White-Sea saltmarshes. The composition of foraminiferal assemblages under local climatic conditions may thus 
deviate substantially from the latitudinal trend.   

1. Introduction 

While the latitudinal gradient in species richness is widely recog-
nized in large-body-sized animals and plants across habitats and loca-
tions (Gaston, 2000; Hillebrand, 2004; Schemske et al., 2009), its 
manifestation in protists and meiofauna is less clear. The number of 
protist species can show weak (Hillebrand, 2004) or no consistency with 
latitudinal gradients, i.e. “everything is everywhere” (Finlay et al., 2004; 
Fenchel, Finlay, 2004). According to other studies, however, many 
protists are geographically restricted (Foissner, 2006; Pawlowski, 
Holzmann, 2008). Accurate biodiversity assessment is evidently 
hampered by undersampling, especially in remote areas of the world 
(Fenchel, Finlay, 2004; Foissner, 2006). 

Benthic foraminifera are protists common in marine ecosystems from 
the deep sea to marginal habitats like intertidal mudflats and 

saltmarshes. Both deep-sea (Culver, Buzas, 2000; Buzas et al., 2002) and 
marginal (Lübbers, Sch€onfeld, 2018) foraminifera exhibit latitudinal 
diversity shifts. There are hundreds of species in tropical marginal set-
tings (Debenay, 1990; Javaux, Scott, 2003) and fewer in mid latitudes 
(Goldstein, Watkins, 1999). Polewards in the mid latitudes, the number 
of species decreases to dozens (e.g. Alve, Murray, 1999; Lehmann, 
2000). The northernmost surveys on live saltmarsh foraminifera from 
southern Scandinavia and Iceland (55–64�N) report 3 to 7 species (Alve, 
Murray, 1999; online supplementary materials in Murray, 2006; Lüb-
bers, Sch€onfeld, 2018). Abundances of saltmarsh foraminifera also 
apparently drop with latitude: 18,000 ind./10 cm3 at 37�N (Camacho 
et al., 2014), 16,000 at 47�N (Leorri et al., 2010), 600–2700 at 54�N 
(Lehmann, 2000), and 1–98 at 64�N (Lübbers, Sch€onfeld, 2018). 

While the assemblages of temperate saltmarsh foraminifera have 
received much attention, relatively patchy (Scott et al., 2014) and 
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narrow (Funk et al., 2004) saltmarshes from subpolar and polar coasts 
are much less studied. There are several sea-level reconstructions in 
southern Alaska, Canada’s eastern coast, and northern Scandinavia, but 
they omit living foraminiferal data (Kemp et al., 2013; Barnett et al., 
2015, 2019). Only three papers are available that deal with living salt-
marsh foraminifera in the subarctic belt. They all report low diversities 
and low densities. Five species were recorded in the subarctic Canada 
(Hudson-James bays, 55�N): Balticammina pseudomacrescens, Jadam-
mina macrescens and Polysaccamina ipohalina in the high marsh, and 
Ammotium salsum and Miliammina fusca in the low marsh (Scott, Martini, 
1982, with the taxonomy amended after Murray, 2006). The densities 
were rather low, 50–180 ind./10 cm3. In Iceland (64�N), Lübbers and 
Sch€onfeld (2018) recorded seven live species: Jadammina macrescens, 
Miliammina fusca, Haynesina orbicularis, Trochammina adaperta, Tro-
chammina astrifica, Trochamminita irregularis, and Deuterammina ochra-
cea. Densities were 1–98 ind./10 cm3. Further north, at 68�N (Vesterålen 
Archipelago, Norway) Barnett (2013) observed two high marsh species: 
J. macrescens and M. fusca; densities were not reported. Clearly, there is a 
lack of data on subpolar regions, which impedes our progress in un-
derstanding the latitudinal diversity and abundance gradients in modern 
saltmarsh foraminifera. 

In the subarctic White Sea, saltmarsh foraminifera have received 
little attention. As a part of sea-level reconstruction study, Kemp et al. 
(2017) reported dead saltmarsh foraminifera from the eastern White 
Sea. Here, we provide a thorough account of living saltmarsh forami-
nifera, including the taxonomy, abundance, and zonation, from pristine 
saltmarshes at 66�N and test the hypothesis that saltmarsh foraminiferal 
assemblages are uniform within subarctic latitudes. 

In addition, as it is totally unknown what happens to saltmarsh 
foraminifera under winter ice, here we for the first time report the re-
sults of winter sub-ice samplings. 

2. Study area 

The White Sea is a glacially-eroded marginal basin, connected to the 

Barents Sea, with decreased surface salinities due to isolation and heavy 
runoff (Babkov, Lukanin, 1985), mostly covered with ice from 
November until April–May. The sites studied are located in its western 
part [Chupa Inlet of the Kandalaksha Bay (Fig. 1)], where mean annual 
air temperature is � 0.4 �C, ranging from 14 to 15�С (up to þ35 �C) in 
summer to � 13�С (with a minimum of � 47�С) in winter (Filatov et al., 
2005). The sheltered parts of the intricate shoreline here have sandy or 
muddy flats edged landwards with upper intertidal meadows (salt-
marshes). These are covered by dense stands of halophytic plants and 
may span hundreds of meters across. The high marsh is fully covered 
with seawater twice a month and the low marsh is exposed to seawater 
daily. The study area is affected by the discharge of the Keret river 
making surface waters brackish and nearly fresh in spring (Babkov, 
Lukanin, 1985). The thickness of the winter fast ice here is 40–50 cm 
(Naumov, 2013). Tides are semidiurnal, but the tidal cycle is remarkably 
asymmetrical (Howland et al., 1999). The spring tide amplitude is 1.6 m, 
and neap 1.0 m. 

3. Material and methods 

We sampled two saltmarshes (Fig. 1). One was a relatively large 
meadow (about 200 m perpendicular to the coastline) gently sloping 
from the head of the Sukhaya Salma embayment (66�180 N, 33�400 E). 
The other was steeper and narrower (some 100 m across) located on the 
isthmus of the Matrenin Island (66�180 N, 33�380 E). The crest of the 
isthmus only 1 m above the high tide was crowned with a narrow fringe 
of tundra vegetation. The environment is pristine. There are no roads, 
ports, or industry. The three small settlements shown on the map are 
accessible by sea only (Fig. 1). The sea traffic is of low intensity, exists in 
summer, consists of small boats driven by tourists and local dwellers. 

In summer 2014, we collected vascular plants, identified them to the 
species level, and outlined vegetation belts. Then we set up one transect 
across the vegetation belts on each of the two marshes. We sampled 
vegetation belts. The Sukhaya Salma transect consisted of four stations 
and Matrenin of five. Plus, the Plantago belt lacking in the latter 

Fig. 1. A. Location of the studied saltmarshes (solid black circles) in the outer Chupa Inlet. The brown fringe marks the intertidal zone as it is shown on the nautical 
chart. The inset shows the White Sea with the study area boxed. B. Sukhaya Salma saltmarsh, high tide. C. Matrenin saltmarsh, low tide. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 
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vegetation sequence was sampled on the other slope of the Matrenin 
isthmus, 11.4 m away from the transect (Fig. 2). A metal tube with 3.5 
cm inner diameter was pushed into the sediment. The core was imme-
diately extruded and sliced with a 1 cm increment. Resultant 10 cm3 

samples were preserved with 70% ethanol and 2 g/l Rose Bengal stain. 
We obtained two replicate cores per station, ~30 cm one from the other. 
The surface 0–1 cm samples were used in this study. To compare the 
results with the winter campaign, we also included subsurface samples 
from one high-marsh station, which was nearest to the winter sampling 
site. All samples were wet sieved and wet counted. On the high marsh, 
we measured the salinity of pore water collected from a separate 10-cm 
deep pit after settling of suspended fines with a Hand-Held Salinity 
Refractometer “Atago MASTER-S/Mill Alpha” accurate to �2 psu. 

Preserved samples were washed with tap water through 0.5 mm (to 
remove plant debris) and 0.125 mm mesh sieves. The 0.125–0.5 mm 
fraction was retained for foraminiferal analysis. Samples were wet split 
into eight aliquots using Retsch PT II splitter before counting. Living and 
dead benthic foraminifera were counted wet in a Petri dish using the 
stereomicroscope Leica M205C. A minimum of 300 living and dead 
specimens were counted per sample or the whole sample was counted if 
the number of living specimens in seven aliquots was less than 300. We 
identified species using the illustrations of Mayer (1962), Stschedrina 
(1948), Br€onnimann and co-authors (1984, 1989). We checked the ac-
curacy of our identification against type material from the collection of 
the Natural History Museum in London. Juvenile specimens of Jadam-
mina macrescens, Balticammina pseudomacrescens and Trochammina 
inflata, which are barely distinguishable, were assigned to “agglutinated 
indefinite”. SEM images were obtained using a scanning electron 

microscope HITACHI TM3000. 
Because of the logistic constraints there was a single quantitative 

under-ice sampling on the Matrenin high marsh during the oceano-
graphic winter in March 2018 and a single qualitative under-ice sam-
pling on the Sukhaya Salma low marsh in March 2019. We removed 
snow ~50 cm thick to clear the ice surface, cut through the ice with a 
chain saw, opened an ice window 50 � 50 cm and cut out thee replicate 
samples 10 cm3 from the top centimeter of the soil. Since the top layer of 
soil with dead plants was frozen into the ice foot, we assume the sampled 
interval corresponded to 2–3 cm sediment depth in the summer cores. In 
2018, samples were immediately preserved in rose Bengal stained 
ethanol. This technique may produce false positives (Murray, Bowser, 
2000; Bernhard et al., 2006), so in 2019, we delivered an untreated 
sample in an insulated box to the field station, wet sieved it in cool 
sea-water, picked out foraminifera, left them in a cool room for half 
hour, then looked for deployed pseudopods to detect live specimens. 

All tidal levels were acquired using WXTide32 program, and all 
elevation values were set to the regional chart datum. For the White Sea, 
WXTide32 refers to a single tide station, the port of Kem, about 160 km 
to the south, which has a >100 years long tide record. The tidal datum 
(mean high water at spring tides, mean high water at neap tides, etc.) 
was calculated following Frey and Basan (1978) for the period of the 
three summer months of the sampling year. Kartesh Marine Station 
situated in about 3 nautical miles from the studied marshes (see Fig. 1 
for location) has a time offset of � 1:03 h versus the Kem tide gauge for 
high water and � 0:39 h for low water, whereas the tidal range is the 
same, as has been measured with a data-logger (Naumov, 2013, un-
published). We accepted these time offsets. Intricate shoreline and 

Fig. 2. Schematic transects of the White Sea saltmarshes. A. Sukhaya Salma. B. Matrenin. Vegetation belts are labeled above the transects. Arrowheads are 
foraminiferal sampling stations. Regional tidal levels calculated with WXTide32 are shown in blue color: MHWS mean high water at spring tides, MHWN mean high 
water at neap tides, MLWN mean low water at neap tides. The boundary between the high marsh and low marsh is MHWN. Intertidal zones are labeled on the right. 
(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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complex sea-floor topography may modify tides, and the tidal dynamics 
at the marshes may deviate from that at the Marine Station. At the 
transects, we always checked WXTide32 time prediction, but did not 
make direct water level measurements and were unable to verify 
WXTide32 level prediction. Elevations were measured using the optical 
RGK-C20 level with a precision of �2 mm per 1 km double levelling. 
Accuracy of levelling was �5 mm. The stations were positioned with 
GPS-navigator Garmin Legend HGx, precision 0.001’. Our WXTide32 
elevation values can be converted to topographic elevations by applying 
a � 1.17m correction, which is the difference between the chart datum 
used by WXTide32 (lowest astronomical tidal level) and the mean sea 
level of the Baltic System of Heights (BSH-77) used in national topo-
graphic maps. Precise recalculation does not seem to be possible, as the 
levelling surveys for the topographic maps were performed in the 1960s. 
The residual glacial isostatic uplift in the western White Sea is 3–4 mm 
per year (Kolka et al., 2012; Romanenko, Shilova, 2012), which makes 
altitude points shown on topographic maps imprecise for þ20 to þ30 
cm. 

To visualize variation in foraminiferal assemblage composition 
(Legendre, Legendre, 2012) we used nonmetric multidimensional 
scaling (nMDS) based on Brey-Curtis dissimilarities calculated from 
square root transformed and double standardized abundances of living 
foraminifera. Double standardization (Bray, Curtis, 1957) by species and 
samples achieves a common scale for rare and abundant species and 
makes the stations with different number of samples comparable. Stress 
values <0.2 indicated an interpretable ordination. The analysis was 
performed in the vegan package (Oksanen et al., 2019) for R (R Core 
Team, 2019). 

To classify the foraminiferal assemblages, we clustered the samples 
using unweighted pair group average method (UPGMA) on the matrix of 
chord distances computed on absolute abundance data, and compared it 
with relative abundances of species. To choose a distance metric, we 
tested performance of chord distance and Bray-Curtis dissimilarity in 
clusterization using cophenetic correlation (Pearson’s correlation be-
tween the dissimilarity matrix recovered from the dendrogram and the 
original dissimilarity matrix). Chord distance was better reflected on the 
dendrogram. Cophenetic distances were computed using the ape 
package (Paradis et al., 2004). Branch support values were calculated 
using multiscale bootstrap resampling (Shimodaira, 2004) in the 
pvclust package for R (Suzuki, Shimodaira, 2015) with 50000 itera-
tions to ensure accurate estimation of approximately unbiased p-values 
(AU p-values). 

Shannon-Wiener index of species diversity was computed as H’ ¼ Σpi 
ln(pi), where pi is a proportion of an i-th species in a sample (Shannon, 
1948). Buzas-Gibson evenness index was calculated as E ¼ exp(H0)/S, 
where S is the total number of species (Buzas, Hayek, 2005). 

Growing Degree Days (GDD) heat index was calculated as the inte-
gral of warmth above a base temperature using www.degreedays.net. In 
our comparison we used a 5-year-average (2013–2017) of growing de-
gree days for a base temperature of 0.0 �C (Supplementary material 1). 

4. Results 

4.1. Saltmarsh description: elevations, vegetation, and salinity 
measurements 

Vascular plants formed belts in both transects (Fig. 2). In the Sukhaya 
Salma, the highest belt was dense stands of the common reed Phragmites 
australis between 2 m and 1.8 m elevations. The wide carpet of the 
saltmarsh rush Juncus gerardii descended to 1.73 m. Seawards, Pucci-
nellia phryganodes was followed by Salicornia pojarkovae below 1.69 m. 
The tidal flat without vascular plants stretched below 1.67 m. In the 
Matrenin saltmarsh, there were belts of the foxtail Alopecurus arundi-
naceus at 2.0–1.7 m, sea plantain Plantago maritima at 1.8–1.7 m, and 
Juncus gerardii at 1.7–1.4 m. There were mixed stands of Puccinellia 
phryganodes and Puccinellia maritima from 1.4 m down to 1.19 m. 

Scattered tufts of sea aster Aster tripolium occurred at 1.19–0.79 m and 
Salicornia pojarkovae at 0.79 m. There was a tidal flat below. The shore 
slope was 1.72 m/km in the Sukhaya Salma and 12.02 m/km in the 
Matrenin saltmarsh. 

We calculated the tidal datum for the Chupa Inlet for the three 
summer months of 2014: Mean High Water Spring (MHWS) 2.0 m; Mean 
High Water Neap (MHWN) 1.67 m; Mean Low Water Neap (MLWN) 0.61 
m; Mean Low Water Spring (MLWS) 0.39 m. The time of high waters did 
not deviate from WXTide prediction for Kartesh Marine Station. Pore- 
water salinity of the high marsh soil was 19 psu in the Sukhaya Salma 
and 24 psu in the Matrenin Island. 

4.2. Saltmarsh foraminiferal assemblages 

4.2.1. Taxa, absolute abundance, relative abundance, and diversity of 
living foraminifera 

We found eight living species in the Sukhaya Salma and seven in the 
Matrenin saltmarsh (Plate 1). With a six species overlap, it was a total of 
nine species. 

Abundances of living foraminifera ranged from 74 to 3040 ind./10 
cm3 (Fig. 3; supplementary material 2). Highest in the middle of low 
marsh, it tended to decrease both towards the high marsh and tidal flat. 
Abundances of low marsh species were remarkably high: Miliammina 
fusca reached 1100 ind./10 cm3 in Puccinellia, and Elphidium williamsoni 
had 2000 ind./10 cm3 in Salicornia. Abundances of high marsh species 
did not exceed 300 ind./10 cm3. 

Either Balticammina pseudomacrescens or Jadammina macrescens 
dominated the high marsh (Fig. 4). The low marsh was dominated by 
Miliammina fusca and Elphidium williamsoni. This distinct change in the 
dominant taxa segregated the assemblages of the high marsh and low 
marsh. Subordinate species, which accounted for 1–10%, were the 
monothalamous Ovammina opaca (on both transects) and Trochammina 
inflata (on one transect). Other species were accessory with <1%. 

The assemblages were monospecific sensu Hayward (2014). The 
high marsh dominant was Balticammina pseudomacrescens (>60%) in 
one marsh and Jadammina macrescens (>80%) in the other. The low 
marsh dominant was Miliammina fusca (>80%). The H’ diversity ranged 
from 0.25 to 1.25, and high marsh was slightly more diverse than low 
marsh (Figs. 3 and 4). 

4.2.2. Multivariate community structure 
Ordination (nMDS) revealed two groups of samples, high marsh and 

low marsh. Elevated abundances of the agglutinated species Jadammina 
macrescens, Balticammina pseudomacrescens, Trochammina inflata were 
characteristic of the high marsh, whereas Miliammina fusca and Elphi-
dium williamsoni of the low marsh (Fig. 5). Similarly, cluster analysis 
indicated two main clusters with AU p-values of 93% and 94%, 
respectively (Fig. 6). Cluster 1 consisted of 9 samples and comprised 
mainly high marsh stations with elevations between 1.6 m and 1.8 m. 
Cluster 1 was dominated by J. macrescens with relative abundances 
46%–96%, co-dominated by B. pseudomacrescens (max 61%), and 
characterized by the presence of O. opaca (max 28%) and T. inflata (max 
6%). Cluster 2 consisted of 11 samples and included only low marsh 
stations with elevations between 0.8 m and 1.7 m. This cluster was 
dominated by M. fusca (max 92%) and E. williamsoni (max 67%). Thus 
both ordination and cluster analysis revealed two distinct assemblages, 
high marsh and low marsh. 

4.2.3. Absolute and relative abundance of dead foraminifera 
The absolute abundances of empty arenaceous tests reached their 

maximum values at high marsh stations and decreased towards low 
marsh in both transects (Fig. 3). The proportions of arenaceous species 
were similar to those in the living fauna (Fig. 4) indicating little taph-
onomic bias. The Sukhaya Salma was barren of calcareous tests, and a 
few empty tests of E. williamsoni occurred in the Matrenin. The lack of 
empty calcareous tests suggests their quick postmortem dissolution. 
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http://www.degreedays.net


Estuarine, Coastal and Shelf Science 238 (2020) 106685

5

Fig. 3. Living and dead abundances (ind./10 cm3) of common foraminiferal species on the two saltmarshes. Shannon-Wiener’s diversity and Buzas-Gibson’s 
evenness are shown. Vertical bars denote min/max range for replicate samples. The vertical dashed line separates high marsh and low marsh. Stations are arranged 
along the sampling transect. The elevation profile is shown at the bottom. 
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Fig. 4. Relative abundances of common foraminiferal species on the two saltmarshes. Shannon-Wiener’s diversity and Buzas-Gibson’s evenness are shown. 
Vertical bars denote min/max range for replicate samples. The vertical dashed line separates high marsh and low marsh. Stations are arranged along the sampling 
transect. The elevation profile is shown at the bottom. 
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4.2.4. Winter densities of saltmarsh foraminifera 
In March 2018, the Matrenin high marsh was covered with a 40 cm of 

ice and 50 cm of snow. The sampled soil was soft, moist, and salty. Rose 

Bengal stained specimens were bright and did not differ from those fixed 
in summer, so we considered the coloration real. In total, five species 
were found beneath the ice, three among them had rose-Bengal-stained 
individuals. Abundances of stained individuals at 2–3 cm core depth 
beneath the upper frozen layer were 15–20 ind./10 cm3, which were 
comparable to 30–80 at the same core depth in summer (Table 1). 
Abundances of dead individuals were high and similar to those observed 
in summer (Table 1; supplementary material 2). The qualitative 
unpreserved samples from the Sukhaya Salma low marsh in March 2019 
contained Elphidium williamsoni, Miliammina fusca, and Ovammina opaca. 
The content of their tests lacked coloration, and the specimens looked 
dead. However, after being left alone for 10–30 min in a cool room, all 
specimens deployed pseudopods and thus were alive (Fig. 7). 

5. Discussion 

Plant species on the studied marshes were typical of the White Sea 
(Sergienko, 2013). In both marshes, the vascular plants formed 
distinctive monospecific belts, though the dominant species somewhat 
varied between the two marshes (Fig. 2). This taxonomic change in the 
dominant taxa reflects their tolerance to inundation by saline or 
brackish water and subaerial exposure (e.g., Pennings et al., 2005; 
Porter et al., 2015). The vertical expansion of the belts also differed. The 
belts were compressed in the Sukhaya Salma saltmarsh and were 
essentially restricted to the upper intertidal zone, whereas the vegeta-
tion belts descended to as low as the mid middle intertidal zone in the 
Matrenin (Fig. 2). We suppose the difference is explained by the inun-
dation time. The time of high waters did not deviated from WXTide32 
prediction, and the level of high waters assumingly did not deviate 

Fig. 5. Ordination of foraminiferal assemblages using the nonmetric 
multidimensional scaling. Distances between points are proportional to Brey- 
Curtis dissimilarities. Stress value estimates the goodness of fit. Shapes code 
location; color codes vegetation belts. The abbreviations in the plot stand for 
foraminiferal species; their position indicates the association of abundances 
with vegetation. 95% confidence ellipses are shown. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web 
version of this article.) 

Fig. 6. Clusterization of samples, based on relative occurrence of living foraminifera. Strength of the cluster support by data is expressed in approximately 
unbiased p-values (AU p-values). The stations are arranged according to the cluster analysis results (station labels: plant species_saltmarsh_replicate). Pink codes the 
high marsh stations (upper cluster), blue – low marsh (lower cluster). (For interpretation of the references to color in this figure legend, the reader is referred to the 
Web version of this article.) 
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either. We did not measure low water levels though. The Sukhaya Salma 
marsh has a small slope. A dense line of boulders, lying where an ice 
pressure ridge builds in winter, isolates the marsh meadow from the 
outer embayment. The boulders retard water outflow. It is plausible that 
the ebb lags, and the mean tidal level, as the result, is higher than 
WXTide32 prediction. The plants are flooded for an extended period, 
and the belts of vegetation are compressed into the upper intertidal 
zone. The Matrenin marsh is steeper, has no barricade of boulders 
retarding the ebb, and the low boundary of saltmarsh vegetation 

descents to the mid middle intertidal zone, which is the mean tidal level 
calculated with WXTide32. 

We found 9 species of foraminifera on the White Sea saltmarshes 
studied. This is more than have ever been found on subarctic saltmarshes 
and even more than recorded for several temperate locations (e.g., Alve, 
Murray, 1999; Saad, Wade, 2017). Standing stock we observed (up to 
3000 ind./10 cm3) is also an order of magnitude higher than any sub-
arctic records and is comparable to temperate locations (e.g., Lehmann, 
2000). Our null hypothesis is therefore rejected, since the White Sea 

Table 1 
Winter and summer abundance of living and dead foraminifera (ind./10 cm3) at 2–3 cm core depth in the Matrenin high marsh.  

Location Matrenin Island 

Vegetation belt Juncus gerardii 

Season, year Winter 2018 Summer 2014 

Replicate ID Ma-Ju-1 Ma-Ju-2 Ma-Ju-3 Ma-Ju-1 Ma-Ju-2 

Living/Dead L D L D L D L D L D 

Jadammina macrescens 13 653 13 843 14 1257 72 835 15 74 
Balticammina pseudomacrescens 1 55 2 107 4 158 1 2   
Trochammina inflata 1 3  1 1 5     
Miliammina fusca  255  279  263 5 583 11 403 
Ovammina opaca  1  2 2 6  7 2  
Forams counted 15 967 15 1232 21 1689 78 1427 28 477 
Portion counted 1 1 1 1 1 1 1 1 1 1 
Forams/10 cm3 15 967 15 1232 21 1689 78 1427 28 477 
Number of species 3 5 2 5 4 5 3 4 3 2 
Sediment volume, cm3 10 10 10 10 10 10 10 10 10 10  

Fig. 7. Saltmarsh and its foraminifera in winter. A. The Sukhaya Salma covered with ice and snow. The continuous plate of fast ice is only disturbed by erratic 
boulders. B. The sampling site in the Matrenin high marsh. C. А specimen of Elphidium wiliamsoni with colorless cytoplasm. D. The same E. williamsoni specimen 
deploying pseudopods. E. Pseudopodial activity of Ovammina opaca (C, D, E. Light microscopy). 
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looks an outlier in terms of living abundances among other known 
subarctic saltmarsh foraminiferal assemblages. Below we discuss the 
potential mechanisms allowing saltmarsh foraminifera to thrive in 
subarctic latitudes. 

5.1. Living foraminiferal abundances and species richness 

Both standing stock and taxonomic diversity of saltmarsh forami-
nifera tend to decrease polewards (Lübbers, Sch€onfeld, 2018). Tem-
perature is the most important abiotic factor of those correlated with 

latitude (Tittensor et al., 2010). Water high heat capacity makes tem-
peratures in the marine realm, particularly in the deep sea, extremely 
stable. Distribution of benthic fauna often reflects the presence of certain 
water masses rather than latitudinal zonation. An example is the 
warm-water fauna that goes into the Arctic following the warm North 
Atlantic current (Skirbekk et al., 2010; Matul, Mohan, 2017). Of course, 
temperature may be just the identifier of a water mass whereas fora-
miniferal distribution is actually controlled by other factors, the first of 
which is food supply (e.g. Schnitker, 1994), yet in this paper we discuss 
temperature as a climatic driver that affects foraminiferal assemblages 

Plate 1. SEM images of living saltmarsh foraminifera of the White Sea. 1, Balticammina pseudomacrescens. 2, Ammotium salsum. 3, Jadammina macrescens. 4, 
Trochammina inflata. 5, Ammobaculites balkwilli? 6, Miliammina fusca. 7, Ovammina opaca. 8, Elphidium albiumbilicatum. 9, Elphidium williamsoni. Scale bar 500 μm. 
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directly. The thin wedge of intertidal water has small volume and re-
sponds promptly to sunlight heating (latitude-driven) and air tempera-
ture (regional climate). We assess potential influences of latitudinal 
zonation and regional variability on the distribution of intertidal fora-
minifera taking into account several climatic variables (Table 2). 

Saltmarsh foraminiferal diversities and abundances apparently are 
not uniform within the subarctic climatic zone. Species richness varied 
from 2 in northern Norway to 9 in the White Sea (this study). Forami-
niferal abundances in subarctic marshes were 1–180 individuals per 10 
cm3 in Hudson Bay, 1–98 in Iceland, and not reported for northern 

Norway (Table 2). Foraminiferal populations were surprisingly rich in 
the White-Sea study area (up to 3000 living specimens per 10 cm3) that 
is comparable to abundances on temperate saltmarshes (e.g., Lehmann, 
2000). 

Climatic differences may explain the disparity in the foraminiferal 
diversities and abundances from the four subarctic locations. Iceland 
and northern Norway are adjacent to the core of Gulf Stream derivatives, 
and both have maritime climate with mild ice-free winters and cool wet 
summers. Precipitation rates are high, mean annual air temperatures are 
about 4 �C. Winter surface water temperatures never drop below 2 �C, 
despite negative air temperatures. Hudson Bay and the White Sea, on the 
other hand, have relatively continental climate with larger seasonal 
differences. Both water bodies are away from warm oceanic currents, 
receive heavy runoff, have a well-developed pycnocline and are covered 
with fast ice for at least 7 months a year. Winter temperatures are 
similar, while in summer Hudson Bay is cooler due to the direct inflow of 
Arctic water through the Fury and Hecla straits (Stewart, Lockhart, 
2004), which makes it almost an arctic basin. The White Sea has no such 
influx of cold Arctic waters, hence warmer summers (Table 2). 

In subpolar and polar regions, long severe winters and sea ice are the 
key factors that affect coastal communities (Dionne, 1989). Ice 
ploughing (see below) eliminates macroscopic life on the shore (Conlan 
et al., 1998). Simultaneously, ice is a thermal insulator that protects 
intertidal organisms from sub-zero temperatures and wind. Air tem-
peratures below intertidal ice have been shown to be consistently higher 
than those on nearby ice-free shorelines (Kuznetsov, 1960; Scrosati, 
Eckersley, 2007). In the White Sea, air temperatures under intertidal ice 
do not fall below � 2 �C (Krell et al., 2003; Naumov, 2013). In spring, 
when the sun rises higher, under-ice temperatures can substantially 
exceed those of ambient air (Kuznetsov, 1960; Scrosati, Eckersley, 
2007). This prevents littoral organisms from experiencing lethal thermal 
stress in cold regions (Scrosati, Eckersley, 2007). The top 2 cm of salt-
marsh soil at our winter sampling site was frozen into the ice foot. Moist 
soil immediately below contained live foraminifera (Table 1). Quick 
deployment of pseudopods indicated the specimens were not dormant 

Table 2 
Regional climatic characteristics and foraminifera in subarctic salt-
marshes. The four saltmarshes, for which living foraminiferal data are avail-
able, are arranged according to increasing latitude. Foraminiferal values are 
from Scott, Martini (1982) for Hudson Bay, Lübbers, Sch€onfeld (2018) for Ice-
land, Barnett (2013) for Norway, n/a not available. 1source: NOAA (Fort Severn) 
for Hudson Bay; Hanna et al. (2006), Bj€ornsson (2003) for Iceland; Filatov et al. 
(2005) for White Sea; www.weatherbase.com for Norway. 2� 5 Maxwell (1986) 
for Hudson Bay; Bj€ornsson (2003), Lübbers, Sch€onfeld (2018) for Iceland; 
Filatov et al. (2005) for White Sea; Barnett (2013) for Norway. Extreme air 
temperatures obtained from www.weatherbase.com (st. Winisk for Hudson Bay, 
st. Borgarnes for Iceland, st. Narvik for Norway) and Filatov et al. (2005) for 
White Sea. 6� 9 Sea surface temperatures for Hudson Bay, Iceland and Norway 
and6,8 data for White Sea are from www.seatemperature.org (St. Rankin Inlet for 
Hudson Bay, Borgarnes for Iceland, Chupa for White Sea, Harstad for Norway), 
and 7,9 for White sea are from Filatov et al. (2005). 10 Ice thickness is Gagnon, 
Gough, 2006 for Hudson Bay; Naumov (2013), Levakin et al. (2013) for White 
Sea. 11 Precipitation is Stewart, Lockhart (2004) for Hudson Bay; Lübbers, 
Sch€onfeld (2018) for Iceland; Filatov et al. (2005) for White Sea; www.weathe 
rbase.com (Vesteralen) for Norway. 12 Celsius-based 5-year-average 
(2013–2017) growing degree days for a base temperature of 0.0 �C with data 
obtained from www.degreedays.net for weather stations Churchill (Hudson 
Bay), Reykjavik (Iceland), Umba (White Sea), Harstad (Norway).   

Hudson 
Bay, Canada 

(55�N) 

Iceland 
(64�N) 

White Sea 
(66�N), this 

study 

Northern 
Norway 
(69�N) 

Number of salt 
marsh species of 
foraminifera 

2–5 1–7 9 2 

Max living 
abundance of 
foraminifera, 
ind./10 cm3 

180 98 3040 n/a 

1Mean annual 
temperature, �C 

� 4.4 4.3 � 0.4 4.4 

2Mean winter air 
temperature, �C 

� 20–22 0 � 13 2 

3Minimum winter 
air temperature, 
�C 

� 45–50 � 3 � 47 � 7.5 

4Mean summer air 
temperature, �C 

10–12 8–10 14–15 13 

5Maximum summer 
air temperature, 
�C 

32 25 35 31 

6Mean winter sea 
temperature, �C 

� 1.6 4.1 � 1 3.8 

7Minimum winter 
sea temperature, 
�C 

� 1.7 2.9 � 1.7 2.7 

8Mean summer sea 
temperature, �C 

6.8 10.6 14.6 12.2 

9Maximum summer 
sea temperature, 
�C 

9.3 12 18.9 14.2 

10Sea ice thickness, 
m 

0.9–2.4 – 0.5–1.5 – 

11Annual 
precipitation rate, 
mm 

200–800 800–1300 500–550 1017 

12Growing degree 
days (above 0 �C) 

1412 2134 1877 2092  

Table 3 
Living foraminiferal species recorded on subarctic saltmarshes. The loca-
tions are arranged according to increasing latitude. The data are from Scott, 
Martini (1982), Lübbers, Sch€onfeld (2018), this study, and Barnett (2013) 
respectively.  

List of species Hudson Bay, 
Canada 
(55�N) 

Iceland 
(64�N) 

Western 
White Sea 

(66�N) 

Northern 
Norway 
(69�N) 

Jadammina 
macrescens 

✓ ✓ ✓ ✓ 

Balticammina 
pseudomacrescens 

✓  ✓  

Trochammina inflata   ✓  
Trochammina 

adaperta  
✓   

Trochammina 
astrifica  

✓   

Trochamminita 
irregularis  

✓   

Deuterammina 
ochracea  

✓   

Haynesina 
orbicularis  

✓   

Polysaccamina 
ipohalina 

✓    

Ammotium salsum ✓  ✓  
Ammobaculites 

balkwilli?   
✓  

Miliammina fusca ✓ ✓ ✓ ✓ 
Ovammina opaca   ✓  
Elphidium 

williamsoni   
✓  

Elphidium 
albiumbilicatum   

✓   
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(Fig. 7). Noteworthy, the winter Elphidium specimens had colorless 
cytoplasm. They probably discard kleptoplasts and switch to a non-algal 
diet. The winter rose-Bengal density at 2–3 cm was comparable to 
summer density at the same core depth (Table 1), but was one order of 
magnitude lower than summer density at the surface (0–1 cm). Salt-
marsh foraminifera do dwell deep in soil (Ozarko et al., 1997; Saffert, 
Thomas, 1998), and their densities decrease significantly downcore 
(Lutze, 1987). In our case, the subsurface part of the population can 
serve as a winter surviving pool that proliferates then in spring. The 
question remains open whether freezing eliminates live foraminifera in 
the surface soil. Little is known of how freezing affects foraminifera. 
Antarctic planktonic foraminifera in seasonal ice live in brine channels, 
not frozen into the solid phase (Spindler, Dieckmann, 1986). Richter 
(1965) reported survival of intertidal foraminifera frozen into ice that 
forms sporadically on the tidal flats of the North Sea. It is not clear 
whether the latter finding is applicable to the subarctic White Sea, where 
winter is much more severe, and tidal ice is dry and lasts seven months a 
year. The issue needs further studying. 

Protection by ice can explain survival of foraminifera during severe 
winter in the White Sea and the Hudson Bay, but it does not explain 
higher summer abundances in the White Sea. Moving ice is extremely 
destructive. The sediment of the upper intertidal zone, including vege-
tated parts of saltmarshes, freeze into ice (Martini et al., 2009; Naumov, 
2013) and can be bulldozed when it moves (Naumov et al., 2009). In 
New England, plant assemblages need a long time to recover after ice 
ploughing (Ewanchuk, Bertness, 2003). Such ploughing will leave the 
marsh surface with small depressions that persist for several years 
(Dionne, 1969, 1974). The terrain of the western White Sea has a veneer 
of erratic boulders, composed of extremely hard granitoid rock of the 
Baltic Shield (Chuvardinskij, 1971), which are frequent on saltmarshes. 
Boulders absorb ice movement and prevent destruction of adjacent soft 
sediments and organisms (Kuznetsov, 1960). Rocks of Hudson Bay are, 
in contrast, relatively weak (Martini, 1981; Scott, Martini, 1982) and 
cannot withstand ice ploughing. However, Naumov’s (2013) and our 
unpublished observations show that ice pressure ridges lie at lower and 
mid intertidal zones, whereas little ice movement occurs at upper 
intertidal where saltmarshes develop. Thus, protection from ploughing 
ice is unlikely to be responsible for the high foraminiferal abundances 
observed. 

The cause of high summer densities recorded could be differences in 
summer temperatures. Although both Hudson Bay and the White Sea 
have continental climates their summers differ. Direct influx of Arctic 
water resulting in cold spells in summer occurs only in Hudson Bay. 
Summer air temperatures near our research sites are 5–8 �С higher than 
at other mentioned subarctic locations, and sea surface temperatures are 
also highest (Table 2). Southeasterly winds from the continent occa-
sionally bring warm air up to þ30 �C (Filatov et al., 2005). Pore-water 
from the top centimeter of sediment on a local tidal flat averaged 17 
�C in midsummer 2001–2002 with eventual maxima of 23–27 �C 
(Golikova, Fateev, 2003). Growing Degree Days (GDD), a climate index 
calculated as the integral of warmth above a base temperature (Prentice 
et al., 1992; Grigorieva et al., 2010), is substantially higher for the White 
Sea than for Hudson Bay (Table 2), meaning more cumulative heat in 
summer, which boosts the whole saltmarsh system including 
foraminifera. 

Saltmarsh foraminifera are less diverse and abundant in milder Ice-
land and northern Norway than at colder subarctic Hudson Bay and 
White Sea locations. The vicinity of a warm oceanic current makes a 
subarctic coastline predominantly ice-free. Lack of ice exposes intertidal 
biota to eventual cold spells, commonly killing intertidal fauna during 
cold winters in mid latitudes (Crisp, 1964). We suggest that the lack of 
insulating ice blanket may cause winter elimination of intertidal fora-
minifera beyond the capability of the populations to recover in summer. 

5.2. Species composition of living foraminiferal assemblages 

Assemblages of saltmarsh foraminifera consisted of 9 species. 
Jadammina macrescens, Balticammina pseudomacrescens, Miliammina 
fusca, and Elphidium williamsoni were omnipresent and most abundant in 
the study area. Trochammina inflata, Ovammina opaca, Ammotium salsum, 
Ammobaculites balkwilli? and Elphidium albiumbilicatum were accessory. 
This is the northernmost record of live B. pseudomacrescens, T. inflata, A. 
salsum, A. balkwilli? and O. opaca in Europe to date. The morphospecies 
we found are cosmopolitan or nearly cosmopolitan (Supplementary 
material 3). The only species with restricted distribution is 
E. albiumbilicatum, presently never found south of Baltic and North Sea 
(Murray, 2006; Korsun et al., 2014 and references therein). On the 
saltmarshes studied E. albiumbilicatum was rare, being though quite 
abundant on adjacent tidal flats (Korsun et al., 2014). 

Discussing species richness in the subarctic belt, we take into 
consideration only living data arrays, because dead and total assem-
blages commonly used in sea-level reconstructions may contain subtidal 
taxa washed ashore or subfossil taxa from outcrops. Subarctic saltmarsh 
foraminiferal faunas are moderately similar across locations. The two 
locations with cold winters (Hudson Bay and the White Sea) are most 
close in species composition. Four of the five species recorded in Canada 
also occur in the White Sea marshes, namely J. macrescens, B. pseudo-
macrescens, M. fusca, and A. salsum (Table 3). The fifth species, Poly-
saccamina ipohalina, is common in North America and recorded on 
European, Malaysian and New Zealandean saltmarshes (Hayward, 
Hollis, 1994; Camacho et al., 2015), but absent in our samples. The 
Icelandic saltmarsh fauna has only two of the seven species in common 
with the White Sea (J. macrescens and M. fusca). Trochamminita irregu-
laris is found widely around the globe (Hayward, Hollis, 1994; Debenay, 
1990; Guilbault, Patterson, 2000; Lehmann, 2000; Jennings et al., 
1995), and its range excludes the White Sea for unknown reason. The 
other taxa found in Iceland do occur in the White Sea, but are shallow 
subtidal: Haynesina orbicularis, Deuterammina ochracea, Trochammina 
adaperta and Trochammina astrifica (Stschedrina, 1948; Voltski et al., 
2015). The latter two had been originally described as forms of Tro-
chammina squamata, while the White-Sea Trochammina squamata 
depicted by Lukina (1988) resembles much T. adaperta from Iceland. 
The comparison with Iceland shows that intertidal foraminifera may 
become subtidal in ice-covered seas. This commonly happens with 
macrofauna, e.g. mussels (Mathiesen et al., 2017; Leopold et al., 2019). 
The northern Norway species list contains only two species, 
J. macrescens and M. fusca. Both are cosmopolitan and occur at all the 
locations discussed. Cosmopolitan species mostly compose the faunas of 
all the four subarctic marshes discussed. Wide zoogeographic range of 
these species likely implies their tolerance for harsh environmental 
conditions. 

There were two plainly different foraminiferal assemblages 
(Figs. 3–6). The boundary between them corresponded approximately to 
the elevation of neap tides (MHWN), and laid within the belt of the 
saltmarsh rush (Juncus, Fig. 2). The plant belts showed variation be-
tween the two marshes (Fig. 2) whereas the foraminiferal assemblages 
were much more similar (Fig. 5). Thus, the two foraminiferal assem-
blages obviously differ in their tolerance to inundation time and have no 
strong link to the vegetation. This weak link to plant communities has 
been already noticed in the pioneering study of subarctic saltmarsh 
foraminifera (Scott, Martini, 1982). 

The high-marsh assemblage was dominated by Jadammina macres-
cens and Balticammina pseudomacrescens while low-marsh by Miliammina 
fusca (Figs. 4 and 6). Kemp at al. (2017) have revealed the same two 
distinct assemblages in the eastern White Sea. So this set of assemblages 
is characteristic of the whole White Sea. In northern Norway, Barnett 
with co-workers (2015) have described similar pair of assemblages, only 
Balticammina pseudomacrescens declines. North American assemblages 
are known from southern Alaska, Hudson Bay, and several localities on 
Canada’s eastern coast (Scott, Martini, 1982, Kemp et al., 2013, Barnett 
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et al., 2016; 2019). Balticammina pseudomacrescens is the omnipresent 
dominant of the high marsh, whereas Miliammina fusca dominates the 
low marsh except for several locations in Hudson Bay. North American 
Jadammina macrescens has a broader vertical range as a dominant. It 
prevails often not only in the high marsh, but also in the low marsh. 
Another difference of the North American marshes is that additional 
dominants may be present, namely Haplophragmoides manilaensis and 
Polysaccammina ipohalina in the high marsh and Tiphotrocha comprimata 
in the low marsh. Trochammina inflata is eventually subdominant in the 
high marsh or low marsh in both North America and Europe, but we see 
no consistent pattern. The assemblages from Iceland (Lübbers, 
Sch€onfeld, 2018) are an outlier. There is little similarity to the above 
mentioned dominants from North America and Europe. All the subarctic 
assemblages demonstrate a very high dominance, often exceeding 80%, 
which indicates stressful environment (e.g., Hayward, 2014). In sum-
mary, the common features of subarctic saltmarshes appear to be the 
clear vertical separation of two foraminiferal assemblages, high domi-
nance, and nearly ubiquitous dominants being Balticammina pseudoma-
crescens, Jadammina macrescens, and Miliammina fusca. 

Saltmarsh vegetation exists further north and has been extensively 
explored in northern Alaska, Canadian Arctic, Spitsbergen, and Siberian 
Arctic (Walton, 1922; Jefferies, 1977; Funk et al., 2004; Sergienko, 
2013; Martini et al., 2019). Foraminiferal record is yet lacking there. We 
predict the presence of saltmarsh foraminifera further north with the 
wide-spread Balticammina pseudomacrescens, Jadammina macrescens, and 
Miliammina fusca as the last forms to disappear polewards. 

6. Conclusions 

We undertook a pilot winter sampling campaign and obtained the 
first record of saltmarsh foraminiferal populations under the ice. The 
uppermost 2 cm layer of soil was frozen into the ice foot, and live 
foraminifera occurred at low abundances (15–20 ind./10 cm3) in the 
moist subsurface soil, which was comparable to summer values at the 
same core depth. Colorless cytoplasm in calcareous foraminifera 
(Elphidium williamsoni) suggests that they discard kleptoplasts and 
abandon algal diet under the winter ice. 

In summer, the White Sea saltmarsh assemblages were surprisingly 
abundant (hundreds of living specimens per 10 cm3, up to 3000x10 
cm3), far exceeding those of Hudson Bay and Iceland. We infer the 
insulation blanket of fast ice maintains constant about-zero tempera-
tures underneath and allows the foraminifera to endure the harsh 
winter. A relatively warm continental summer in the White Sea makes 
saltmarsh foraminifera thrive during the vegetation season. 

The studied White Sea fauna comprised 9 species, much fewer than a 
typical 15–40 on mid-latitude saltmarshes. Like other subarctic salt-
marshes, those from the White Sea host a taxonomic subset of mid- 
latitude fauna. With the single exception of Elphdium albiumbilicatum, 
all the taxa found here have nearly cosmopolitan zoogeographic ranges. 
There were two distinct foraminiferal assemblages. Jadammina macres-
cens and Balticammina pseudomacrescens prevailed on the high marsh 
whereas Miliammina fusca on the low marsh. Dominance in both as-
semblages was remarkably high, often exceeded 80%. The boundary 
between the assemblages was controlled by water level (neap tides) 
rather than by vegetation belts. These coupled high-marsh and low 
marsh assemblages vary little throughout the subarctic belt of Europe 
and North America. 
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